
OpenFPGA Documentation
Release 1.0

Xifan Tang

Dec 01, 2020

MOTIVATION

1 Motivation 1

2 EPFL Logic Synthesis Libraries 3
2.1 Alice . 3
2.2 Kitty . 3
2.3 Lorina . 3
2.4 Mockturtle . 3

3 Logic Synthesis Oracle 5
3.1 Deep Learning Network Classifier . 5
3.2 Partition Manager . 6
3.3 Partition View . 7
3.4 Optimization . 7
3.5 Detailed Command Usage . 8

4 Contact 13

i

ii

CHAPTER

ONE

MOTIVATION

The growing complexity of semiconductor chips has revealed two critical limitations of contemporary EDA tech-
niques. First, while contemporary EDA methodologies are extremely well developed and highly optimized, they usu-
ally only target specific types of logic networks. For instance, And-Inverter Graph (AIG)-based logic optimizations
perform well for control-intensive logic networks, while the recently developed Majority-Inverter Graph (MIG)-based
logic optimizations are efficient for the arithmetic-intensive logic network. As contemporary semiconductor chips
become more diverse in functionality than before, using a unified logic optimization methodology may no longer
guarantee best Performance-Power-Area (PPA). To tightly follow the trend in circuit complexity, it is worthwhile to
study how to partition a design efficiently into portions of specific attributes (arithmetic, control, etc.) and apply ad-hoc
logic optimization techniques on them. In contemporary EDA flow, such optimizations are only achieved by intensive
manual efforts and strong expertise is required. Another contemporary issue of logic synthesis is the difficulty to
parallelize the optimization steps. As the complexity of chips exploded in recent years and considering that such trend
may remain in future, using a traditional logic optimization methodology causes the runtime of EDA flows (even only
the runtime of logic synthesis) to be more than 24 hours. Large semiconductor designs can be partitioned into equal
blocks that are distributed over different processors for EDA optimizations to achieve parallelization. However, such
simple parallelism would reduce runtime at the cost of PPA degradation. Indeed, as partitioning would be achieved
regardless of logic attributes, each partition would have to be treated with generic optimization techniques, leading
the final QoR to be far from the optimum. Therefore, we target a fast, automatic tool capable of identifying efficient
logic optimization techniques for the different portion of circuit designs. By partitioning SoC designs in terms of logic
attributes and applying ad-hoc logic optimization technique, it brings an opportunity for logic synthesis to achieve
significant runtime reduction and performance improvement simultaneously.

1

OpenFPGA Documentation, Release 1.0

2 Chapter 1. Motivation

CHAPTER

TWO

EPFL LOGIC SYNTHESIS LIBRARIES

2.1 Alice

Alice is a library developed in C++14, by EPFL, that provides the LSOracle shell interface. Alice allows the user to
create commands to manipulate user-defined data types. Furthermore, Alice supports Python bindings, easing the task
of creating scripts. To access the detailed documentation, please refer to Alice Documentation.

2.2 Kitty

Kitty is a C++14 library that provides basic structure for truth table generation and manipulation. In the context of this
project, kitty is extended to extract the logic attributes of different partitions. The attributes are represented to black
and white figures, which are taken as input by the Neural Network to delegate the appropriate optimizer for a given
partition. For a detailed explanation about the library, please access the Kitty Documentation.

2.3 Lorina

Lorina is a C++ library to parse logic synthesis recurrent file formats. LSOracle uses the And-Inverter Graph (AIG)
reader from lorina. Also, the Verilog writer was extended to output sequential circuits, so that sequential Majority-
Inverter Graphs (MIGs) can be functionally verified, and used in further steps of the ASIC flow.

The Lorina full documentation is available here.

2.4 Mockturtle

Mockturtle is a C++17 library that implements different kinds of Boolean networks, as well as algorithms for logic
manipulation. So far, LSOracle uses AIGs and MIGs to optimize different partitions of a circuit, taking advantage of
the best features of each optimizer.

The MIGs capabilites were extended on this library, so that Mockturtle can also deal with sequential MIGs. In order to
unlock sequential MIG logic optimization, the depth and area-oriented MIGs optimization algorithms were adapted.

Mockturtle complete documentation is available on this link.

3

https://libalice.readthedocs.io/en/latest/?badge=latest
https://libkitty.readthedocs.io/en/latest/index.html
https://lorina.readthedocs.io/en/latest/?badge=latest
https://mockturtle.readthedocs.io/en/latest/

OpenFPGA Documentation, Release 1.0

4 Chapter 2. EPFL Logic Synthesis Libraries

CHAPTER

THREE

LOGIC SYNTHESIS ORACLE

3.1 Deep Learning Network Classifier

A Deep Neural Network (DNN) is used to determine the best-fit algorithm to optimize a partition. Image representa-
tions of a karnaugh-map are used (KM-Image) to model the logic network’s functionality in the 2D space. An example
of a KM-Image of a 6-input logic cone is shown below.

The DNN model was based primarily on a solution to the MNIST handwriting problem because the input for both
applications are simple grayscale images and there are very few classes (10 in MNIST and 2 in this application). The
topology is shown below.

5

OpenFPGA Documentation, Release 1.0

Combinational networks from the EPFL and ISCAS85 benchmark suites were partitioned into smaller sub-circuits,
and the logic cones from these sub-circuits were optimized using both AIG and MIG methods in order to create the
training dataset. The best optimization method was determined which reduced the area of the cone the most. We used
this metric because it resulted in a relatively balanced dataset. After training with this dataset, the overall accuracy
achieved with this model was 79% with similar accuracy for each of the classes meaning that the model is not biased
to one method over the other.

3.2 Partition Manager

The partition manager is the class responsible for creating and managing partitions over a Boolean network. The man-
ager is in charge of partitions classification and assignment to different optimizers. Finally, the manager synchronizes
optimized partitions over the original Boolean network.

For partition generation, the manager receives as input the circuit Boolean network within the number of desired
partitions by the user, and interfaces with the KaHyPar tool for k-way partitioning. KaHyPar returns a vector A, where
the index i corresponds to the node index, and the value A[i] refers to which partition the i th node belongs. From this
vector, the partition manager keeps track of partitions inputs, outputs, and nodes, as well as connections in between
partitions. These kinds of information are used by the partition_view method for optimization purposes.

As for the classification, the partition manager is responsible for generating the KM-Images for every logic cone. The
generated images are then classified and assigned to different optimizers by Frugally Deep. Since the same partitions
might have different cones assigned to different optimizers, the manager applies a heuristic to weight each cone. The
optimizer with the highest sum of weights is used for the partition optimization.

After optimization has taken place over a set of nodes (partition), the manager synchronizes the optimized partition
with the original network. Therefore, proper connections are established with adjacent partitions, keeping the func-
tional equivalence.

6 Chapter 3. Logic Synthesis Oracle

https://github.com/SebastianSchlag/kahypar
https://github.com/Dobiasd/frugally-deep

OpenFPGA Documentation, Release 1.0

3.3 Partition View

Partition view works in a similar way to the window_view. It receives a Boolean network, and two sets of nodes: one
bounding the partition inputs and the other defining the partitions outputs. For each output, the method recursively
adds nodes in the partition scopes until it reaches the partitions inputs. Note that partitions are non-overlapping, and
one node cannot belong to more than one partition. It is ensured by the partition_manager class. Conversely to the
window_view, the partition_view is mutable and may be passed straight to any optimization method.

3.4 Optimization

3.4.1 Optimization with Classification

The main functionality of this command is to use the DNN model to determine the best-fit algorithm for each partition
of a network. The general flow of this command is: read network into either AIG (must begin with AIG network),
perform k-means hypergraph partitioning, determine the algorithm to use with each using classification, perform
optimization on each partition, merge partitions back into one, and write out an optimized network. An example of
using this command is shown below.

//Read AIGER file and store as AIG network
read_aig <AIGER file>
//Partition stored AIG
partitioning <number of partitions>
//Perform classification, optimization, merging, and write out to Verilog file
optimization -c deep_learn_model.json -o <Verilog file to write to>

There are also a couple other options for this command.

Partitions with only AIG Optimization

This option skips classification and optimizes all partitions using just AIG optimization.

//Read AIGER file and store as AIG network
read_aig <AIGER file>
//Partition stored AIG
partitioning <number of partitions>
//-a flag denotes using AIG optimization
optimization -a -o <Verilog file to write to>

Partitions with only MIG Optimization

This option skips classification and optimizes all partitions using just MIG optimization. Note that the AIGER file
must still be stored as an AIG network. Conversion for MIG optimization will occur after partitioning.

//Read AIGER file and store as AIG network
read_aig <AIGER file>
//Partition stored AIG
partitioning <number of partitions>
//-m flag denotes using MIG optimization
optimization -m -o <Verilog file to write to>

3.3. Partition View 7

https://mockturtle.readthedocs.io/en/latest/views.html#window-view-network-view-on-a-window

OpenFPGA Documentation, Release 1.0

High Effort Classification

Instead of using the DNN model, a high effort method is used to determine what algorithm to use for each partition.
After partitioning, each partition is optimized using both AIG and MIG methods and the one that reduces the area and
delay product is the method to be used.

Note: This metric is not the same used to train the DNN model, and the model was also trained on cones rather than
full partitions.

//Read AIGER file and store as AIG network
read_aig <AIGER file>
//Partition stored AIG
partitioning <number of partitions>
//-b flag denotes using high effort classification
optimization -b -o <Verilog file to write to>

3.4.2 Two-Step Mixed Synthesis

This method also uses classification, but it is slightly different. This method also partitions an AIG network and
performs classification, but it only optimizes partitions that have been classified to use AIG optimization. The resulting
network is then partitioned and re-classified, and now MIG classified partitions are optimized. Similar to the above
command, the flag -b can be used instead of -c deep_learn_model.json to use a brute force method for classification.

read_aig <AIGER file>
mixed_2step -p 5 -c deep_learn_model.json -o <Verilog file to write to>

3.5 Detailed Command Usage

• aigscript

Performs homogeneous AIG optimization using interleaved rewriting, refactoring, and balancing, similar to
ABC’s resyn2. AIG network must be stored before use.

• balance

Performs network balancing. Uses AIG network by default. Use -m flag to balance stored MIG network.

• cut_e

Performs cut enumeration on a stored AIG network

• cut_rewriting

Performs cut rewriting on a stored network (AIG default. MIG use -m option). Default cut size is 4; use -c INT
to set an alternative cut size.

• depth

Displays depth of current network. AIG default; use -m for MIG, -x for XAG.

• depthr

Performs depth oriented MIG rewriting. MIG only.

• interleaving

Performs interleaved MIG rewriting and refactoring.

8 Chapter 3. Logic Synthesis Oracle

OpenFPGA Documentation, Release 1.0

• migscript

Performs homogeneous MIG optimization using interleaved rewriting, refactoring, and balancing, similar to
ABC’s resyn2. MIG network must be stored before use.

• optimization

Performs Mixed Synthesis on network after partitioning. Network must be loaded and separately partitioned before use.

– “-n” to specify neural network model

– “-o” to specify verilog output

– “-s INT” to specify classification strategy. 0 = Balanced, 1 = Area optimized, 2 = Delay optimized

– “-a” to perform only AIG optimization

– “-m” to perform only MIG optimization

– “-c” to combine adjacent partitions of the same type

– “–skip-feedthrough” to not include feedthrough nets when writing output

• oracle

All in one command to partition stored AIG network and perform mixed synthesis, as with “optimization” command. Uses all flags in optimization command.

– “–partition INT” to manually specify the partition count instead of using the automatic selection.

• rwscript

XAG cut rewriting

• generate_truth_tables

Generates truth tables for every logic cone in every partition. AIG default; use “-m” for MIG

• read_aig

Reads an AIGER file (binary, not ASCII) and stores the resulting network. It is stored as an AIG by default.

– “-m” store resulting network as MIG

– “-x” store resulting network as XAG

• read_bench

Reads a bench file and stores the resulting network as a KLUT network.

– “-a” store resulting network as AIG

– “-m” store resulting network as MIG

– “-x” store resulting network as XAG

• read_blif

Reads a bench file and stores the resulting network as a KLUT network.

– “-a” store resulting network as AIG

– “-m” store resulting network as MIG

– “-x” store resulting network as XAG

• read_verilog

3.5. Detailed Command Usage 9

OpenFPGA Documentation, Release 1.0

Reads a simple, structural verilog file and stores the resulting network as AIG. If you need to read real world verilog files, use the Yosys plugin, or use Yosys to create an AIG or BLIF of the network.

– “-m” store resulting network as MIG

• lut_map

Converts the stored network to an LUT network. Reads from the stored AIG network by default.

– “-m” read from MIG network instead

– “-K INT” LUT size for mapping (default 6)

– “-C INT” Max number of priority cuts (default 6)

– “-o FILENAME” Write LUT mapping to bench file

• ps

Print network statistics for:

– “-a” the AIG network

– “-m” the MIG network

– “-x” the XAG network

– “-k” the KLUT network

– “–all” all stored networks

• disjoint_clouds

Writes status of all disjoint combinational clouds in the stored AIG.

• get_all_partitions

Exports every partition to a verilog file. Must provide the directory to write to as a positional argument.

– “-m” export partitions in the MIG network

• print_karnaugh

Print all partitioned truth tables as karnaugh maps

• show_ntk

Display details of the stored network. AIG default.

– “-m” show MIG network

• techmap

Experimental ASIC mapper. Not ready for general use; please contact developers if you would like a detailed
usage guide.

• write_bench

Write KLUT network to bench format

• write_blif

Write KLUT network to blif format

• write_dot

Writes AIG network to dot format for visualization. Do not use except with very small networks. * “-m” to
write MIG network

10 Chapter 3. Logic Synthesis Oracle

OpenFPGA Documentation, Release 1.0

• write_hypergraph

Output stored network in hypergraph format used by hMETIS, gMETIS, etc. For use with an external partitioning tool. Takes filename to write to as a positional argument.

– “-m” write stored MIG network (default AIG)

• write_verilog

Writes stored AIG network into very simple structural verilog. For robust verilog support, use Yosys plugin.

– “-m” write MIG network

– “-x” write XAG network

– “–skip-feedthrough” exclude feedthrough nets in resulting verilog file

• crit_path_stats

Determines the number of AND and MAJ3 nodes along the critical path in an MIG network.

• get_cones

Displays size and depth of all logic cones in an AIG network

• ntk_stats

Writes number of AND2 and MAJ3 nodes in stored MIG network

• partitioning

Partition the AIG network. Number of partitions is a positional argument.

– “-m” partition MIG network

– “-c” path to config file for KaHyPar

– “-f” path to external partition file, if using an external partitioner.

• partition_detail

Display all nodes in each partition.

– “-m” use stored MIG

– “-n” use internal net names (default is yes for AIG)

3.5. Detailed Command Usage 11

OpenFPGA Documentation, Release 1.0

12 Chapter 3. Logic Synthesis Oracle

CHAPTER

FOUR

CONTACT

General questions:

Prof. Pierre-Emmanuel Gaillardon

pierre-emmanuel.gaillardon@utah.edu

Technical Details about LSOracle:

Max Austin

max.austin@utah.edu

Walter Lau Neto

walter.launeto@utah.edu

13

mailto:pierre-emmanuel.gaillardon@utah.edu
mailto:max.austin@utah.edu
mailto:walter.launeto@utah.edu

	Motivation
	EPFL Logic Synthesis Libraries
	Alice
	Kitty
	Lorina
	Mockturtle

	Logic Synthesis Oracle
	Deep Learning Network Classifier
	Partition Manager
	Partition View
	Optimization
	Detailed Command Usage

	Contact

